
Enhancing Language Model 
Representations with Attributed 

Network Embeddings
Jacob A. Matthews

PEER 2024



Overview

1. Learning attributed network embeddings with fastText (Bojanowski et al. 
2017)

○ A fast and simple way to model graph structure and attributes jointly
2. Generating network embeddings from text

○ Use BERT to predict a node representation given the text associated with that node
■ Example: citation graphs with metadata and abstracts

○ Predicting text attributes with similarity 
○ Generating contextualized word embeddings

3. Potential relevant applications
○ Semantic graphs, hypertext, ontologies…



Attributed Network Embeddings

● Network embeddings encode structural information about nodes in a network.
● A simple method still in use is node2vec (Grover and Leskovec, 2016)

○ Trains word2vec (a word embedding model) using random walks on the graph as text data
○ Treats node IDs as words and walks as text sequences

● Like word2vec, node2vec has a fixed vocabulary
○ Cannot represent nodes not seen during training
○ Has no way to represent node attributes (each node is just an arbitrary ID)

● More recent methods address these shortcomings, but can be challenging 
and expensive to implement.

○ They require proficiency with actual ML libraries (excludes large potential user base)
○ Can be slow and computationally expensive



Using fastText for attributed network embedding

1. Generate walks
2. Encode node IDs as pseudowords, where each character 

corresponds to an attribute
3. Train fastText on the encoded walks.



Why does this work?

● Unlike word2vec, fastText is a character n-gram model
○ fastText can represent any sequence of valid Unicode characters, whether they were seen in 

training or not.
○ In addition, fastText shares character n-gram representations across words.

● We can represent attributes and nodes in the same space
○ Can compute similarity values between attributes and nodes freely.

● We can update a model with out-of-sample attributes
○ Other models like attri2vec (Zheng et al. 2021) use fixed-length attribute vectors to learn node 

representations, which requires knowing the number of possible attributes in advance.



Network embeddings and language modeling

● Many networks are derived from (or can be easily mapped to) text data
○ Citation graphs, semantic graphs, ontologies… 

● Can we predict attributed network embeddings from text sequences?
● And can we use these generated embeddings to predict attributes?

○ What happens to the model’s hidden states with this approach?
■ Contextualized word embeddings?

 



Our approach

1. Build a citation graph dataset using Semantic Scholar (S2)
a. 25,000 nodes, 53,530 edges 

{node_id: 
{
title: ‘Enriching Word Vectors with Subword Information’, 
abstract: ‘Continuous…’, 
authors: [2329288, …, 2047446108], 
venue: ‘TACL’,
year: 2016 
…
}

2. Train fastText on the citation graph with metadata attributes
a. Encode nodes as “{Decade}{Year}{Venue}{Authors}”🠒“ÊËÌÍÎÏÐ”

3. Train BERT to predict node embeddings from paper titles and abstracts



[CLS]

Training

fastText

Walk 
Generation

Walk 
Encoding

1. Train fastText

2. Fine-tune BERT on text

SciBERT

MLM

Fine-Tuned 
SciBERT

Negative 
Sample 

Selection

2. Fine-tune BERT on node embeddings



Similarity of BERT-estimated and fastText embeddings
Test (n=5,000)Train (n=20,000)



Downstream accuracy

Fine-tuning Strategy Year Prediction 
10 classes, 
maj. baseline = .44 

Venue Prediction
100 classes, 
maj. baseline = .33

Text .4474 (F1=.38) .4074 (F1=.35)

Text + Node Embeddings .5110 (F1=.49) .4374 (F1=.41)



Attribute similarity

● >70% of estimated 
embeddings are most or 
second-most similar to the 
correct year embedding.

Test (n=5,000)



Word-level representations

● Does this method affect word-level representations (“word vectors”) 
generated by the language model?

● We generate pairwise similarities for every occurrence of a given word that 
appears in our test set from models fine-tuned on text and text+embeddings.

● Ideally, fine-tuning LMs on node embeddings will “contextualize” word 
embeddings as well.



Text + node embeddingsText only 



Future directions

● Larger citation graph datasets and full-text documents (not just abstracts)
● Improving our understanding of the relationship between attributes, graph 

structure, and text data.
● Extending our method to ontologies and semantic graphs

○ Unified Medical Language System 
○ Wikidata
○ Universal Decompositional Semantics Dataset (White et al. 2019)

■ Predicting semantic type from subsequences



Thanks!
References

1. Beltagy, I., Lo, K., & Cohan, A. (2019). SciBERT: A pretrained language model for scientific text. In Proceedings of the Conference on 
Empirical Methods in Natural Language Processing.

2. Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching word vectors with subword information. Transactions of the 
Association for Computational Linguistics, 5, 135–146.

3. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language 
understanding. In Proceedings of the North American Chapter of the Association for Computational Linguistics.

4. Grover, A., & Leskovec, J. (2016). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining.

5. Mikolov, T., Chen, K., Corrado, G. S., & Dean, J. (2013). Efficient estimation of word representations in vector space. In Proceedings of 
the International Conference on Learning Representations.

6. White, A. S., Stengel-Eskin, E., Vashishtha, S., Govindarajan, V. S., Reisinger, D. A., Vieira, T., Sakaguchi, K., Zhang, S., Ferraro, F., 
Rudinger, R., Rawlins, K., & Van Durme, B. (2019). The universal decompositional semantics dataset and decomp toolkit. In 
Proceedings of the International Conference on Language Resources and Evaluation.

7. Zhang, D., Yin, J., Zhu, X., & Zhang, C. (2019). Attributed network embedding via subspace discovery. Data Mining and Knowledge 
Discovery, 33, 1953–1980.


