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Research Question
★ Contextual word embeddings are 

assumed to capture semantic info.
★ How sensitive are these embeddings to 

non-semantic features in text input? 
★ Our approach: a simple character 

swapping procedure to introduce 
minor orthographic noise.

jam963@cornell.edu

Methods
➔ Character swapping procedure: swap a 

character in each word with a random 
case-matched character (n=68k). 

➔ Compare similarity of edited word 
embedding and unedited word 
embedding, both with and without 100 
words of context from Wikitext.

➔ Similarity metrics: cosine similarity, 
Spearman correlation (to mitigate 
effects of anisotropy)

Results
★ We find that CWEs are highly sensitive to 

minor orthographic noise.
○ Sensitivity is related to subword tokenization: 

fewer tokens, higher sensitivity.
★ Single character swaps (particles vs partfcles) 

result in up to 60% loss of a word’s semantic 
identity.

★ Most English words are represented by 1-2 
tokens, making them vulnerable. 

★ Context does not significantly mitigate this 
effect for any model.

Background
➔ Prior work has investigated the effect of 

noise on downstream task performance 
[1, 2, 3].

➔ Known problems with CWEs generated 
with PLMs (anisotropy, rogue 
dimensions) [4, 5]. 

➔ No work on the effect of textual noise 
on contextual embeddings.

Model Word Edited Word Tokens Edited Tokens
GPT-2
BERT
XLNet

contenders contelders
“contenders”
“contender” ,“s”
“contenders”

“cont”, “e”, “ld”, “ers
“con”, “tel”, “ders”
“con”, “tel”, “der”, “s””

Effect on Tokenization Tokenization
➔  Methods like BPE [6] result in the majority of 

words being represented by 1-3 tokens. 
➔ English words are often only 1-2 tokens.
➔ Minor orthographic noise causes complex and 

unpredictable “splitting” in token-level 
representation.
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