Semantics or Spelling?
Probing contextual word embeddings with orthographic noise
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tl:dr

1. Contextual word embeddings (CWEs) are sensitive to minor spelling changes

2. Changing one character can cause 60% loss in semantic similarity

3. Sensitivity is related to tokenization: fewer tokens = more sensitive
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How robust are CWEs to minor orthographic noise?
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o Randomly replace a single character in each word (n=68k) with a random case-matched
character
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e Character swapping procedure
o Randomly replace a single character in each word (n=68k) with a random case-matched
character
e CWE generation

o Mean-pool hidden states corresponding to tokens in each word

e Compare CWEs
o Compute similarity between edited words (with character swaps) and original words.
o Use both unstandardized similarity (cosine) and standardized similarity (Spearman) metrics.
o Analysis both with and without context (100 words)



Methodology

Stars with cooler outer atmospheres , including the Sun , can
form various diatomic and polyatomic molecules . = = = Diameter =
= = Due to their great distance from the Earth , all stars except
the Sun appear to the unaided eye as shining points in the night
sky that twinkle because of the effect of the Earth 's atmosphere

The Sun i1s also a star , but it i1s close enmugh to the Earth to
appear as a disk instead , and to provide daylight . Other than
the Sun , the star with the largest
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Tokenization
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Tokenization
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Most words are represented by only 1-3 tokens, English words by 1 or 2



Representational analysis

= Non-contextual Contextual

o

© 1.00] - -
£ 0.75]

0

T 0.50

S T

s

T 0.251

—_

©

T 00—
Sl 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9
& Token length Token length

Similarity between the edited word and unedited word increases
with the number of tokens used to encode the unedited word.
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Conclusion

e CWEs are surprisingly sensitive to orthographic noise

e This sensitivity is related to subword tokenization

e Caution is warranted in using CWEs as semantic proxies
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